Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Determine the value of k so that the function $ f(x) = \left\{ \begin{array}{l l}kx^2, & \quad if { x \leq 2 } \\ 3, & \quad if { x > 2 } \end{array} \right. $ is continuous

Can you answer this question?

1 Answer

0 votes
  • If $f$ is a real function on a subset of the real numbers and $c$ be a point in the domain of $f$, then $f$ is continuous at $c$ if $\lim\limits_{\large x\to c} f(x) = f(c)$.
Step 1:
$ f(x) = \left\{ \begin{array}{l l}kx^2, & \quad if { x \leq 2 } \\ 3, & \quad if { x > 2 } \end{array} \right. $
We have,
LHL at $x=2$
$\Rightarrow \lim\limits_{x\to 2^-}f(x)=\lim\limits_{h\to 0}f(2-h)$
$\Rightarrow \lim\limits_{h\to 0}k(2-h)^2$
Step 2:
RHL at $x=2$
$\Rightarrow \lim\limits_{x\to 2^+}f(x)=\lim\limits_{x\to 2^+}3$
Since the function is continuous.
$\therefore$ LHL =RHL
$\lim\limits_{h\to 0}k(2-h)^2=\lim\limits_{x\to 2^+}3$
$\Rightarrow \lim\limits_{h\to 0}k[4-4h+h^2]$
$\Rightarrow 3$
(i.e) $4k=3$
$\Rightarrow k=\large\frac{3}{4}$
answered Sep 30, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App