Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If \( | \overrightarrow a |=13 | \overrightarrow b |=5\: and \: \overrightarrow a.\overrightarrow b=60\) then find \( |\overrightarrow a\) x \( \overrightarrow b|\)

Can you answer this question?

1 Answer

0 votes
  • $\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{\mid\overrightarrow a\mid\mid\overrightarrow b\mid}$
  • $\mid \overrightarrow a\times\overrightarrow b\mid=\mid\overrightarrow a\mid\mid\overrightarrow b\mid.\sin\theta$
Step 1:
Given :$\mid\overrightarrow a\mid=13$ and $\mid\overrightarrow b\mid$ and $\overrightarrow a.\overrightarrow b=60$
$\overrightarrow a.\overrightarrow b=\mid\overrightarrow a\mid\mid\overrightarrow b\mid\cos\theta$
$\cos\theta=\large\frac{\overrightarrow a.\overrightarrow b}{\mid\overrightarrow a\mid\mid\overrightarrow b\mid}$
$\qquad=\large\frac{60}{13\times 5}$
Step 2:
We can find the third side of the triangle by using Pythagoras theorem.
Step 3:
$\overrightarrow a\times\overrightarrow b=\mid\overrightarrow a \mid\mid\overrightarrow b\mid\sin\theta .\hat n$
$\mid\overrightarrow a\times\overrightarrow b\mid=\mid\overrightarrow a \mid\mid\overrightarrow b\mid\sin\theta $
$\Rightarrow 13\times 5\times \large\frac{5}{13}$
$\Rightarrow 25$
answered Sep 30, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App