logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Model Papers

Evaluate : $ \begin{vmatrix} cos \theta & -sin \theta \\ sin \theta & cos \theta \end{vmatrix} $

1 Answer

Toolbox:
  • To evaluate the value of the given determinants ,let us multiply the elements $a_{11}$ and $a_{22}$ and then subtract $a_{21}\times a_{12}$.
$A=\begin{vmatrix}cos\theta &-sin\theta\\sin\theta & cos\theta\end{vmatrix}$
let us multiply the elements $a_{11}$ and $a_{22}$ and then subtract $a_{21}\times a_{12}$.
We get,
$\mid A\mid=\cos \theta\times \cos\theta-(\sin\theta)\sin\theta$.
$\qquad=\cos^2\theta+\sin^2\theta$
But $cos^2\theta+sin^2\theta$=1.
Therefore $\mid A\mid=1.$
answered Sep 27, 2013 by sreemathi.v
 

Related questions

...