Comment
Share
Q)

# Using integration, find the area of the region bounded by the parabola $$y^2=4x$$ and the circle $$4x^2+4y^2=9$$

Comment
A)
Toolbox:
• If given two curves represented by y=f(x),y=g(x) where $f(x)\geq g(x)$ in [a,b],the point of intersection of two curves are given by $x=a$ and $x=b$ by taking common values of y from the equation of the two curves.
Step 1:
The curve $x^2=4y$ is the equation of the parabola with vertex at the origin and axis along y-axis and open upwards.
Let $R_1$ be the region lying inside the parabola $x^2=4y\Rightarrow y=\frac{x^2}{4}$
We have $4x^2+4y^2=9$
$x^2+y^2=\large\frac{9}{4}$$\Rightarrow y^2=\large\frac{9}{4}-x^2 y=\sqrt {\large\frac{9}{4}-x^2} Let R_2 be the region lying inside the circle. Hence the area of the required region is bounded by the parabola x^2=4y and the circle x^2+y^2=\large\frac{9}{4}. Step 2: To find the point of intersection let us substitute x^2=4y in the equation of the circle. 4y+y^2=\large\frac{9}{4}$$\Rightarrow 4y^2+16y-9=0$
On factorising we get,
(2y+9)(2y-1)=0
$\Rightarrow x=\large\frac{-9}{2}$
and $y=\large\frac{1}{2}$.
Hence the points of intersection are ($\sqrt 2,\frac{1}{2})(\sqrt 2,\frac{-1}{2}).$
Step 3:
The required area is $A=\int_0^{\Large\frac{1}{\sqrt 2}}(R_2-R_1)dx$
$\Rightarrow\int_0^{\Large\frac{1}{\sqrt 2}}\large\frac{\sqrt {9-4x^2}}{2}-\int_0^\frac{1}{\sqrt 2}\frac{x^2}{4}$$dx. A=\frac{1}{2}\int_0^{\Large\frac{1}{\sqrt 2}}\sqrt {9-4x^2}-\frac{1}{4}\int_0^\sqrt 2x^2dx. On integrating we get, \Rightarrow\large\frac{1}{2}.\frac{1}{2}\begin{bmatrix}\frac{2x}{2}\sqrt{9-4x^2}+\frac{9}{2}\sin^{-1}\frac{2x}{3}\end{bmatrix}_0^\sqrt 2-\frac{1}{4}\begin{bmatrix}\frac{x^3}{3}\end{bmatrix}_0^\sqrt 2 On applying the limits we get, \Rightarrow\large\frac{\sqrt 2}{12}+\frac{9}{8}\sin^{-1}\big(\frac{2\sqrt 2}{3}\big). Step 4: But the curves are symmetrical about x-axis the required area is A=2\bigg[\large\frac{\sqrt 2}{12}+\frac{9}{8}$$\sin^{-1}\big(\large\frac{2\sqrt 2}{3}\big)\bigg]$
$\;\;\;=\large\frac{\sqrt 2}{6}+\frac{9}{4}$$\sin^{-1}\big(\frac{2\sqrt 2}{3}\big). Hence the required area is \large\frac{\sqrt 2}{6}+\frac{9}{4}$$\sin^{-1}\big(\large\frac{2\sqrt 2}{3}\big)$.