$\begin {array} {1 1} (A)\;\sqrt 3x+y=8 & \quad (B)\;x+y\sqrt 3 =8 \\ (C)\;\sqrt 3 x-y=8 & \quad (D)\;x-y\sqrt 3=8 \end {array}$

- Equation of the line in the normal form is $ x \cos \omega + y \sin \omega = p$

Step 1 :

Given $p=4$ units and $ \alpha = 120^{\circ}$

hence $\omega = 30^{\circ}$

$ \therefore $ Equation of the line in the normal form is

$x \cos 30^{\circ}+y \sin 30^{\circ}=4$

$ \cos 30^{\circ}= \large\frac{\sqrt 3}{2}$ and $ \sin 30^{\circ}= \large\frac{1}{2}$

$ \therefore x\large\frac{\sqrt 3}{2}$$+\large\frac{y}{2}$$=4$

(i.e) $ \sqrt 3x+y=8$ is the required equation.

Why we use angle 30

Ask Question

Tag:MathPhyChemBioOther

Take Test

...