Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Find the mean deviation about the mean of the distribution

$\begin{array}{1 1}(A)\;10.10,1.99\\(B)\;8.4,5.6\\(C)\;3,8\\(D)\;12,1.25\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Formula used to solve this problem are :
  • Median $M =\large\frac{\bigg(\Large\frac{N}{2} \bigg)th\; observation +\bigg( \Large\frac{N}{2}+1 \bigg) th\; observation}{2}$
  • Mean deviation about mean $=\large\frac{\sum f_i | x_i - \bar{x}|}{\sum f_i }$
Step 1:
$N= \sum f_i =20(even)$
Median $M =\large\frac{\bigg(\Large\frac{N}{2} \bigg)th\; observation +\bigg( \Large\frac{N}{2}+1 \bigg) th\; observation}{2}$
$\qquad= \large\frac{\bigg(\Large\frac{20}{2} \bigg)th\; observation + \bigg( \Large\frac{20}{2} +1\bigg) th \;observation}{2}$
$\qquad= \large\frac{10th \;observation + 11th \;observation}{2}$
$\qquad= \large\frac{12+12}{2}$
$\qquad= \large\frac{24}{2}$
$\qquad= 12$
Step 2:
Mean deviation about mean $=\large\frac{\sum f_i | x_i - \bar{x}|}{\sum f_i }$
$\qquad= \large\frac{25}{20}$
$\qquad= 1.25$
Hence D is the correct answer.
answered Jul 2, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App