$\begin{array}{1 1}(A)\;0.99\\(B)\;5.59\\(C)\;8\\(D)\;1.25\end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- Formula used to solve this problem are :
- Combined SD $=\sqrt {\large\frac{n_1\sigma_1 ^2 + n_2 \sigma_2 ^2}{n_1+n_2} + \frac{n_1n_2 (\bar{x_1} - \bar {x_2})^2}{(n_1+n_2)}}$
- Given $n_1=20 \qquad n_2=20$
- $\sigma_1=5 \qquad \sigma_2=20$
- $\bar {x_1}=17 \qquad \bar{x_2} =22$

Substituting the values in the formula

Combined SD $= \sqrt { \large\frac{20 \times 5^2+ 20 \times 5^2}{20+20}+\frac{20 \times 20 (17-22)^2}{(20+20)^2}}$

$\qquad= \sqrt {\large\frac{1000}{40}+\frac{400 \times 5^2}{40^2}}$

$\qquad= \sqrt {\large\frac{1000}{40} +\frac{400 \times 5^2}{40^2}}$

$\qquad= \sqrt {\large\frac{1000}{40} +\large\frac{10000}{40 \times 40}}$

$\qquad= \large\frac{1}{40} $$ \sqrt { 40000+10000}$

$\qquad= \large\frac{1}{40}$$ \sqrt {50000}$

$\qquad= \large\frac{223.606}{40}$

$\qquad= 5.59$

$\therefore $ The combined standard deviation of the set obtained are $5.59$

Hence B is the correct answer.

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...