Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Two sets each of $20$ observations , have the same standard deviation $5$. The first set has a mean $17$ and the second a mean $22$. Determine the standard deviation of the set obtained by combining the given two sets.

$\begin{array}{1 1}(A)\;0.99\\(B)\;5.59\\(C)\;8\\(D)\;1.25\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Formula used to solve this problem are :
  • Combined SD $=\sqrt {\large\frac{n_1\sigma_1 ^2 + n_2 \sigma_2 ^2}{n_1+n_2} + \frac{n_1n_2 (\bar{x_1} - \bar {x_2})^2}{(n_1+n_2)}}$
  • Given $n_1=20 \qquad n_2=20$
  • $\sigma_1=5 \qquad \sigma_2=20$
  • $\bar {x_1}=17 \qquad \bar{x_2} =22$
Substituting the values in the formula
Combined SD $= \sqrt { \large\frac{20 \times 5^2+ 20 \times 5^2}{20+20}+\frac{20 \times 20 (17-22)^2}{(20+20)^2}}$
$\qquad= \sqrt {\large\frac{1000}{40}+\frac{400 \times 5^2}{40^2}}$
$\qquad= \sqrt {\large\frac{1000}{40} +\frac{400 \times 5^2}{40^2}}$
$\qquad= \sqrt {\large\frac{1000}{40} +\large\frac{10000}{40 \times 40}}$
$\qquad= \large\frac{1}{40} $$ \sqrt { 40000+10000}$
$\qquad= \large\frac{1}{40}$$ \sqrt {50000}$
$\qquad= \large\frac{223.606}{40}$
$\qquad= 5.59$
$\therefore $ The combined standard deviation of the set obtained are $5.59$
Hence B is the correct answer.
answered Jul 3, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App