logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

The frequency distribution given below : Where A is a positive integer , has a variance of 160. Determine the value of A.

$\begin{array}{1 1}(A)\;9\\(B)\;5\\(C)\;7\\(D)\;15\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Formula used to solve this problem are :
  • Variance $\sigma^2=\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2$
Step 2:
Variance $\sigma^2=\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2$
$160 =\large\frac{92 A^2}{7} -\bigg( \large\frac{22A}{7}\bigg)^2$
$160 = \large\frac{92 A^2}{7} -\large\frac{484 A^2}{49}$
$160= \large\frac{92 \times 7A^2 -484A^2}{49}$
$160 \times 49 =644 A^2 -484 A^2$
$160 \times 49= 160 A^2$
$A^2= \large\frac{160 \times 49}{160}$
$A^2= 49$
$A=\pm 7$
Given A is a positive integer .
The value of A is 7.
Hence C is the correct answer.
answered Jul 3, 2014 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...