Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

The frequency distribution given below : Where A is a positive integer , has a variance of 160. Determine the value of A.

$\begin{array}{1 1}(A)\;9\\(B)\;5\\(C)\;7\\(D)\;15\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Formula used to solve this problem are :
  • Variance $\sigma^2=\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2$
Step 2:
Variance $\sigma^2=\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2$
$160 =\large\frac{92 A^2}{7} -\bigg( \large\frac{22A}{7}\bigg)^2$
$160 = \large\frac{92 A^2}{7} -\large\frac{484 A^2}{49}$
$160= \large\frac{92 \times 7A^2 -484A^2}{49}$
$160 \times 49 =644 A^2 -484 A^2$
$160 \times 49= 160 A^2$
$A^2= \large\frac{160 \times 49}{160}$
$A^2= 49$
$A=\pm 7$
Given A is a positive integer .
The value of A is 7.
Hence C is the correct answer.
answered Jul 3, 2014 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App