Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

There are 60 students in a class .The following is the frequency distribution of the marks obtained by the students in a test : where x is a positive integer . Determine the mean and standard deviation of the marks.

$\begin{array}{1 1}(A)\;1.122\\(B)\;5\\(C)\;7\\(D)\;15\end{array} $

Can you answer this question?

1 Answer

0 votes
  • The formula used to solve this problem are : Mean $\bar{x} = \large\frac{\sum f_i x_i}{\sum f_i}$
  • Standard deviation = $\sigma=\sqrt{\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2}$
  • To calculate the mean and SD initially we need to calculate the value of x.
Step 1:
$=> 5x-2 +x^2+x^2+1 +2x+1=60$
$=> 2x^2+15x -8x-60 =0$
$=> x(2x+15)-4(2x+15) =0$
$=> (x-4)(2x+15)=0$
=> $x=4 ,x= \large\frac{-15}{2}$
Given x is a positive integer .
So the value of x is 4.
Step 3:
Mean $\bar{x} = \large\frac{\sum f_i x_i}{\sum f_i}$
$\qquad= \large\frac{168}{60}$
$\qquad= 2.8$
Step 4:
Standard deviation = $\sigma=\sqrt{\large\frac{\sum f_i x_i^2}{\sum f_i} - \bigg(\large\frac{\sum f_ix_i }{\sum f_i } \bigg)^2}$
$\qquad= \sqrt { \large\frac{546}{60} -\bigg( \large\frac{168}{60}\bigg)^2}$
$\qquad= \sqrt {\large\frac{546 \times 60 -(168)^2}{60 \times 60}}$
$\qquad= \large\frac{1}{60} $$ \sqrt { 32,760 -28,224}$
$\qquad= \large\frac{1}{60 }$$\sqrt {4536}$
$\qquad= \large\frac{67.349}{60}$
$\qquad= 1.122$
Hence A is the correct answer.
answered Jul 3, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App