Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Mean and standard deviation of 100 items are 50 and 4 , respectively . find the sum of all items and sum of the squares of the items.

$\begin{array}{1 1}(A)\;1122\\(B)\;251600\\(C)\;79087\\(D)\;15345\end{array} $

Can you answer this question?

1 Answer

0 votes
Mean $\bar{x} =\large\frac{\sum x_i}{n}$
Given $\bar{x}=50$
$\qquad n=100$
$\qquad 50 =\large\frac{\sum x_i}{100}$
$\qquad =50 \times 100$
$\qquad =5000$
Sum of all the item= 5000
Step 2:
Standard deviation $\sigma =\sqrt { \large\frac{ \sum x_i^2}{n} - \bigg( \large\frac{\sum x_i}{n}\bigg)^2}$
$\sigma^2= \large\frac{\sum x_i ^2}{n} - \bigg( \large\frac{\sum x_i^2}{n}\bigg)^2$
Given $\sigma= 4, n=100,mean= 50$
$4^2=\large\frac{\sum x_i^2}{100}$$-50^2$
$16+2500=\large\frac{\sum x_i^2}{100}$
$=> 2516 \times 100 = \sum x_i^2$
$\sum x_i^2 =251600$
Hence B is the correct answer.
answered Jul 4, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App