Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Calculate the mean deviation about the mean for the following frequency distribution.

$\begin{array}{1 1}(A)\;4.15,3.049\\(B)\;25,1600\\(C)\;790,87\\(D)\;9.2,3.84\end{array} $

Can you answer this question?

1 Answer

0 votes
  • The formula to solve this problem:
  • Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$$\times h$
  • Mean deviation about the mean $= \large\frac{\sum f_i |x_i - \bar {x} |}{\sum f_i}$
Step 2:
Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$$\times h$
$\qquad= 10+ \large\frac{-5}{25} $$ \times 4$
$\qquad= 10 - \large\frac{20}{25}$
$\qquad= 10-0.8$
$\qquad= 9.2$
Step 3:
Mean deviation about the mean $= \large\frac{\sum f_i |x_i - \bar {x} |}{\sum f_i}$
$\qquad= \large\frac{96}{25}$$=3.84$
Hence D is the correct answer
answered Jul 4, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App