logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Calculate the mean deviation about the mean for the following frequency distribution.

$\begin{array}{1 1}(A)\;4.15,3.049\\(B)\;25,1600\\(C)\;790,87\\(D)\;9.2,3.84\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The formula to solve this problem:
  • Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$$\times h$
  • Mean deviation about the mean $= \large\frac{\sum f_i |x_i - \bar {x} |}{\sum f_i}$
Step 2:
Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$$\times h$
$\qquad= 10+ \large\frac{-5}{25} $$ \times 4$
$\qquad= 10 - \large\frac{20}{25}$
$\qquad= 10-0.8$
$\qquad= 9.2$
Step 3:
Mean deviation about the mean $= \large\frac{\sum f_i |x_i - \bar {x} |}{\sum f_i}$
$\qquad= \large\frac{96}{25}$$=3.84$
Hence D is the correct answer
answered Jul 4, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...