Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XI  >>  Math  >>  Statistics
Answer
Comment
Share
Q)

Determine the mean and standard deviation for the following distribution:

$\begin{array}{1 1}(A)\;4.15,3.049\\(B)\;25,1600\\(C)\;790,87\\(D)\;5.975,2.85\end{array} $

1 Answer

Comment
A)
Toolbox:
  • The formula to solve this problem:
  • Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$
  • Standard deviation (SD) $=\sqrt {\large\frac{\sum f_id_i^2}{\sum f_i}- \bigg(\large\frac{\sum f_id_ui}{\sum f_i} \bigg)^2}$
Step 2:
Mean $(\bar {x} )=A+\large\frac{\sum f_id_i}{\sum f_i}$
$\qquad= 9+\large\frac{-121}{40}$
$\qquad= 9- 3.025$
$\qquad= 5.975$
Step 3:
Standard deviation (SD) $=\sqrt {\large\frac{\sum f_id_i^2}{\sum f_i}- \bigg(\large\frac{\sum f_id_ui}{\sum f_i} \bigg)^2}$
$\qquad= \sqrt { \large\frac{691}{40} -\bigg(\large\frac{-121}{40}\bigg)^2}$
$\qquad= \large\frac{1}{40} $$\sqrt {27640 -14641}$
$\qquad=\large\frac{1}{40}$$ \sqrt {12999}$
$\qquad= \large\frac{114.013}{40}$
$\qquad= 2.85$
Hence D is the correct answer.
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...