Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

The weights of coffee in 70 jars is shown in the following table : Determine variance and standard deviation of the above distribution.

$\begin{array}{1 1}(A)\;4.15,3.049\\(B)\;25,1600\\(C)\;790,87\\(D)\;1.16,1.08\end{array} $

Can you answer this question?

1 Answer

0 votes
  • The formula used are $ mean (\bar x)= A +\large\frac{\sum f_id_i}{\sum f_i } $$ \times h$
  • Variance $= \bigg[ \large\frac{\sum f_i d_i^2}{\sum f_i} - \bigg( \large\frac{\sum f_i d_i}{\sum f_i } \bigg)^2\bigg]$$ \times h^2$
  • SD $(\sigma) =\sqrt {variance}$
Step 1:
Assumed mean $= 203 (A)$
Step 2:
Variance $= \bigg[ \large\frac{ \sum f_i d_i ^2}{\sum f_i} - \bigg( \large\frac{\sum f_i d_i }{\sum f_i }\bigg)^2 \bigg] $$ \times h^2$
$\qquad= \bigg[\large \frac{157.5 }{70} - \bigg(\frac{-73}{70} \bigg)^2 \bigg]^2 $$ \times 1^2$
$\qquad= \large\frac{157.5 \times 70 -(-73)^2}{70 \times 70}$
$\qquad= 1.16$
Step 3:
SD $(\sigma) =\sqrt {variance}$
$\qquad=\sqrt {1.16}$
$\qquad= 1.08$
Hence D is the correct answer.
answered Jul 7, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App