Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Determine mean and standard deviation of first n terms of an A.P whose first term is 'a' and common difference d.

Can you answer this question?

1 Answer

0 votes
The arithmetic series of AP is $a_n= a+ (n-1)d$
$a_n =a+ (n-1) d$
Now, The arithematic series in two different ways .
Step 1:
$S_n =a_1 +(a_1+d) +(a_1+2d)+ .......(a_1+(n-2) d)+(a_1+(n-1) d)$----(1)
$S_n=(a_n-(n-1)d )+(a_n-(n-2)d)+.......(a_n-2d) +(a_n-d) +a_n$---(2)
Adding both sides of the equations
$2S_n=n (a_1+a_n)$
$S_n= \large\frac{n}{2} $$(a_1+a_n)$
$\therefore a_n= a_1 +(n-1)d$
$\therefore S_n= \large\frac{n}{2}$$ [a_1 +a_1 +(n-1)d]$
$\qquad=\large\frac{n}{2} $$ [ 2a_1+(n-1)d]$
Sum of the series= $\large\frac{n}{2}$$[2a_1+(n-1)d]$
Step 2:
$Mean =\large\frac{sum\;of\;the \;series}{n}$
$\qquad= \large\frac{\Large\frac{n}{2} [2a_1+(n-1) d]}{n}$
$\qquad= \large\frac{1}{2} $$[2a_1+(n-1)d]$
$\qquad= a_1+\large\frac{(n-1)}{2}$$d$
$S.D= \sqrt {variance}$
Variance = $\large\frac{\sum x_i^2}{n} - \bigg( \large\frac{\sum x_i }{n}\bigg)^2$
As $a_n = a_1+(n-1)d$
Where $i=0$ to $n$
$\sum x_i ^2= a_1^2+(a_1+d)^2+(a_1+2d)^2+.....(a_1+(n-1)d)$
$=> na_1^2+d^2(1+4+9+16+......(n-1)^2) + 2a_1d( 1+2+3+4+........(n-1))$
$=> \sum x_i ^2 =na_1^2+d^2 \bigg[ \large\frac {n(n-1)(2n-1)}{6} \bigg]+$$ 2a_1d \bigg[\large\frac{n(n-1)}{2} \bigg]$
$\large\frac{\sum x_i^2}{n}$$=a_1^2+\large\frac{d^2(n-1)(2n-1)}{6} $$+ a_1d (n-1)$
Variance = $\large\frac{\sum x_i^2}{n} - \bigg( \large\frac{\sum x_i }{n}\bigg)^2$
After solving the equation
$\qquad= \large\frac{d^2 (n^2-1)}{12}$
$\qquad= \sqrt { \large\frac{ d^2 (n^2-1)}{12}}$
$\qquad= d \sqrt {\large \frac{n^2-1}{12}}$
answered Jul 7, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App