$\begin{array}{1 1}(A)\;\large\frac{4}{9}\\(B)\;\large\frac{3}{7}\\(C)\;\large\frac{5}{7}\\(D)\;\large\frac{5}{9}\end{array} $

- Required probability =$\large\frac{n(E)}{n(S)}$

Step 1:

A die is rolled such that each odd number occurs twice and even number occurs once.

$\therefore$ Total sample space =$\{1,1,2,3,3,4,5,5,6\}$

n(S)=9

P(Greater than 3) to occur.

Step 2:

$\therefore$ Number of favorable outcomes n(E)=$\{4,5,5,6\}$

$\Rightarrow 4$

Step 3:

$\therefore$ Required probability =$\large\frac{n(E)}{n(S)}$

$\Rightarrow \large\frac{4}{9}$

Hence (A) is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...