- The formulae used to solve are Mean $ \bar{x} =A+ \large\frac{ \sum d_1}{n}$
- Standard deviation $\sigma= \sqrt { \large\frac{\sum d_1^2}{n} - \bigg( \frac{\sum d_1}{n}\bigg)^2}$
- Coefficient of variation $= \large\frac{ \sigma}{\bar{x}} $$ \times 100$

Step 2:

Mean $ \bar{X} =A+ \large\frac{ \sum d_1}{n}$

$\qquad=42+\large\frac{21}{10}$

$\qquad= 42+2.1$

$\qquad= 44.1$

Step 3:

Standard deviation $\sigma= \sqrt { \large\frac{\sum d_1^2}{n} - \bigg( \frac{\sum d_1}{n}\bigg)^2}$

$\qquad= \sqrt {\large\frac{1735}{10} - \bigg( \large\frac{21}{10}\bigg)^2}$

$\qquad= \sqrt { \large\frac{ 17350- 441}{100}}$

$\qquad= \sqrt { \large\frac{16909}{100}}$

$\qquad= \sqrt {169.09}$

$\qquad= 13.003$

Step 4:

CV of Ravi $=\large\frac{\sigma}{\bar{X}} $$ \times 100$

$\qquad=\large\frac{ 13.003}{44.1} $$ \times 100$

$\qquad= 29.485$

Step 2:

Mean $ \bar{Y} =A+ \large\frac{ \sum d_2}{n}$

$\qquad= 55- \large\frac{20}{10}$

$\qquad= 55-2$

$\qquad= 53$

Step 3:

Standard deviation $\sigma= \sqrt { \large\frac{\sum d_1^2}{n} - \bigg( \frac{\sum d_1}{n}\bigg)^2}$

$\qquad= \sqrt {\large\frac{5968}{10} - \bigg( \frac{-20}{10} \bigg)^2 }$

$\qquad= \sqrt{\large\frac{59680-400}{100}}$

$\qquad= \sqrt {592.8}$

$\qquad= 24.347$

Step 4:

CV of Hashina $=\large\frac{\sigma}{\bar{X}} $$ \times 100$

$\qquad= \large\frac{24.347}{53} $$ \times 100$

$\qquad= 45.28$

COMPARISON:

As CV of Ravi < CV of Hashina

$\therefore $ Ravi is more intelligent and consistent.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...