Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Show that the semi-vertical angle of the right circular cone of given total surface area and maximum volume is \( sin^{-1} \frac{1}{3} \).

Can you answer this question?

1 Answer

+1 vote
  • Surface Area =$\pi r l+\pi r^2$
  • $V=\large\frac{1}{3}$$\pi r^2h$
Step 1:
Let $r$ be the radius $l$ be the slant height and $h$ be the vertical height of a cone of semi-vertical angle $\alpha$
Surface area $S=\pi r l+\pi r^2$------(1)
$l=\large\frac{S-\pi r^2}{\pi r}$
The volume of the cone $V=\large\frac{1}{3}$$\pi r^2h$
$\qquad\qquad\qquad\qquad\quad=\large\frac{1}{3}$$\pi r^2\sqrt{l^2-r^2}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\sqrt{\large\frac{(S-\pi r^2)^2}{\pi^2r^2}-\normalsize r^2}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\sqrt{\large\frac{(S-\pi r^2)^2-\pi^2r^4}{\pi^2r^2}}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\large\frac{\sqrt{S^2-2\pi Sr^2+\pi^2r^4-\pi^2r^4}}{\pi r}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{r}{3}$$\sqrt{S^2-2\pi Sr^2+\pi^2r^4-\pi^2 r^4}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{r}{3}$$\sqrt{S(S-2\pi r^2)}$
Step 2:
$V^2=\large\frac{r^2}{9}$$S(S-2\pi r^2)$
$V^2=\large\frac{S}{9}$$(Sr^2-2\pi r^4)$
$\large\frac{dV^2}{dr}=\frac{S}{9}$$[2Sr-8\pi r^3]$
$\large\frac{d^2V^2}{dr^2}=\frac{S}{9}$$[2S-24\pi r^2]$------(2)
Now $\large\frac{dV^2}{dr}$$=0$
$\Rightarrow \large\frac{S}{9}$$(2Sr-8\pi r^3)=0$
$\Rightarrow (S-4\pi r^2)=0$
Putting $S=4\pi r^2$ in (2)
$\large\frac{d^2V}{dr^2}=\frac{S}{9}$$[8\pi r^2-24\pi r^2]=-ve$
$\Rightarrow V$ is maximum when $S=4\pi r^2$
Step 3:
Putting the value in equ(1)
$4\pi r^2=\pi r l+\pi r^2$
$4\pi r^2-\pi r^2=\pi r l$
$3\pi r^2=\pi r l$
$\sin \alpha=\large\frac{1}{3}$
Thus $V$ is maximum when $S=$constant
answered Sep 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App