Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Following are the marks obtained by $9$ students in a mathematics test: $50,69,20,33,53,39,40,65,59$ The mean deviation from the median is :

$\begin{array}{1 1}(A)\; 9\\(B)\;10.5\\(C)\;12.67\\(D)\;14.76\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Median M $ = \bigg( \large\frac{N+1}{2} \bigg) $ th observation
  • Mean deviation about mean = $ \large\frac{\sum|x_i -M|}{n}$
Median M $ = \bigg( \large\frac{N+1}{2} \bigg) $ th observation
$\therefore \bigg(\large\frac{9+1}{2}\bigg)$th observation.
$\qquad= \large\frac{10}{2} $th observation
$\qquad = 5$ th observation
Median (M)=53
$x_i =50; \qquad |x_i-M|=|50-53|=3$
$x_i =69; \qquad |x_i-M|=|69-53|=16$
$x_i =20; \qquad |x_i-M|=|20-53|=33$
$x_i =33; \qquad |x_i-M|=|33-53|=20$
$x_i =53; \qquad |x_i-M|=|53-53|=0$
$x_i =39; \qquad |x_i-M|=|39-53|=14$
$x_i =40; \qquad |x_i-M|=|40-53|=13$
$x_i =65; \qquad |x_i-M|=|65-53|=12$
$x_i =59; \qquad |x_i-M|=|59-53|=6$
$\qquad =117$
Mean deviation about mean = $ \large\frac{\sum|x_i -M|}{n}$
$\qquad= \large\frac{117}{9} $
$\qquad= 13$
The nearest option is $12.67$
Hence C is the correct answer.
answered Jul 8, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App