Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Probability
0 votes

A sample space consists of a elementary outcomes $e_1,e_2........e_9$ whose probabilities are $P(e_1)=P(e_2)=0.08,P(e_3)=P(e_4)=P(e_5)=.1,P(e_6)=P(e_7)=.2,P(e_8)=p(e_9)=0.07$.Suppose $A=\{e_1,e_5,e_8\},B=\{e_2,e_5,e_8,e_9\}$.Calculate $P(\bar{B})$ from P(B),also calculate $P(\bar{B})$ directly from the elementary outcomes of $\bar{B}$.

$\begin{array}{1 1}(A)\;0.68\\(B)\;0.78\\(C)\;0.48\\(D)\;0.18\end{array} $

Can you answer this question?

1 Answer

0 votes
Step 1:
Given :
Addition of all probabilities will be equal to 1
Step 2:
Probability of $\bar{B}$ from P(B)
$\Rightarrow P(\bar{B})=1-P(B)$
$\Rightarrow 1-0.32$
$\Rightarrow 0.68$
Step 3:
Probability of $\bar{B}$ from the elementary outcomes
$\Rightarrow$ Probability of ($e_1,e_2.........e_9)-P(e_2,e_5,e_8,e_9)$
$\therefore P(e_1,e_3,e_3,e_6,e_1)$
$\Rightarrow 0.08+0.1+0.1+0.2+0.2$
$\Rightarrow 0.68$
Hence (A) is the correct answer.
answered Jul 8, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App