$\begin{array}{1 1}(A)\; 0 \\(B)\;1 \\(C)\;1.5 \\(D)\;2.5 \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

- The formula used to solve this problem are coefficient of variation $=\large\frac{ \sigma}{\bar x} $$ \times 100$

Given coefficient of variation $1=50$

Coefficient of variation $2=60$

Arithmetic mean $1=30$

Arithmetic mean $2= 25$

$CV1= \large\frac{\sigma_1}{\bar {x} _1} $$\times 100$

$=> 50 =\large\frac{\sigma 1}{30} $$ \times 100$

$\sigma_1= \large\frac{50 \times 30}{100}$

$\qquad= 15$

$CV2= \large\frac{\sigma_2}{\bar {x} _2} $$\times 100$

$60= \large\frac{\sigma_2}{25}$$ \times 2$

$\sigma _2 =\large\frac{60 \times 25}{100}$

$\qquad= \large\frac{150}{10}$$=15$

The difference b/w $\sigma_1$ and $\sigma_2$ is zero.

Hence A is the correct answer.

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...