Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

The mean and standard deviation of a set of $n_1$ observations are $\bar{x_1}$ and $s_1$ respectively , while the mean and standard deviation of another set of $n_2$ observations are $x_2$ and $s_2$ respectively. Show that the standard deviation of the combined set of $(n_1+n_2)$ observations is given by $ S.D= \sqrt {\large\frac{n_1 (s_1)^2 +n_2 (s_2)^2}{n_1+n_2} +\frac{n_1n_2(\bar {x_1} -\bar {x_2} )^2}{(n_1+n_2)^2}}$

Can you answer this question?

1 Answer

0 votes
Combined mean for $n_!$ and $n_2$ observations are $ \bar {X} = \large\frac{n_1\bar{x}_1+n_2 \bar {x_2}}{n_1+n_2}$
to calculate standard deviation
$\sum x_1^2 = n_1 ( \sigma_1^2 +\bar {x}_1^2)$
$\sum x_2^2 = n_2 ( \sigma_2^2 +\bar {x}_2^2)$
Combined $SD= \sqrt { \large\frac{n_1 (s_1 ^2 + \bar{x}_1)+n_2 (s_2^2+\bar {x}_2^2)}{n_1+n_2} - \bigg( \large\frac{n_1 \bar {x_1}+n_2 \bar {x_2}}{n_1+n_2}\bigg)^2}$
$\sigma = \sqrt {\large\frac{n_1s_1^2 +n_2s_2^2}{n_1+n_2}+\frac{n_1\bar{x}_1^2+n_2x_2^2)(n_1n_2) -(n_1 \bar {x} _1 +n_2 \bar{x}_2)^2}{(n_1+n_2}}$
$\quad= \sqrt {\large\frac{n_1s_1^2+n_2s_2^2}{n_1+n_2}+\frac{(n_1\bar{x_1}^2 +n_2 \bar {x_2}^2)(n_1+n_2)- (n_1 \bar {x_1} +n_2 \bar{x_2})^2}{(n_1+n_2)^2}}$
Expanding the equation
$\qquad= \sqrt{\large\frac{n_1s_1^2 +n_2 s_2^2}{n_1+n_2} +\frac{n_1^2 x_1^2 +n_1 \bar{x_2}^2 +n_2^2x_2^2-(n_1^2 x_1^2+n_2^2 x_2^2 +2 n_1n_2 \bar {x_1} \bar {x_2})}{(n_1+n_2)^2}}$
$\qquad= \sqrt {\large\frac{n_1 (s_1)^2 +n_2 (s_2)^2}{n_1+n_2} +\frac{n_1n_2(\bar {x_1} -\bar {x_2} )^2}{(n_1+n_2)^2}}$
Hence proved
answered Jul 9, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App