Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Statistics
0 votes

Calculate the mean deviation about the mean of the set of first n natural numbers when n is odd number.

$\begin{array}{1 1}(A)\;\sqrt {\large\frac{n^2-1}{12}}\\(B)\;\large\frac{n^2-1}{4n}\\(C)\;0\\(D)\;\large\frac{n-1}{12}\end{array} $

Can you answer this question?

1 Answer

0 votes
mean of first n natural numbers where n is odd number $\large\frac{n+1}{2}$
mean deviation $= \large\frac{\sum |x_i -x_n|}{n}$
$\qquad= \large\frac{1}{n} \bigg[ \bigg| 1- \frac{n}{2} \bigg| $$+ \bigg|\bigg(2- \frac{n}{2} +1 \bigg)\bigg|.........\bigg|\bigg(n- \large\frac{n+1}{2} \bigg)\bigg|\bigg]$
$\qquad= \large\frac{2}{n}$$ \large\frac{\bigg [ \bigg (\large\frac{ n-1}{2}\bigg) \bigg( \large \frac{n-1}{2} +1 \bigg)\bigg]} {2}$
$\qquad= \large\frac{ (n-1)(n+1)}{4n}$
$\qquad= \large\frac{n^2 -1}{4n}$
Hence B is the correct answer.
answered Jul 9, 2014 by meena.p
please explain  the 2nd and 3rd step

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App