logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Straight Lines
0 votes

Match the question given under Column $C_1$ with their appropriate answer given under the Column $C_2$ for the following :

Column $c_1$ Column $c_2$
(a) The coordinates of the points P and Q on the line x+5y=13 which are at a distance of 2 units from the line 12x-5y+26=0 are (i) (3, 1) (-7, 11)
(b)  The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are (ii) $  \bigg( - \large\frac{1}{3}, \large\frac{11}{3} \bigg), \bigg( \large\frac{4}{3}, \large\frac{7}{3} \bigg)$
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are (iii) $ \bigg( 1, \large\frac{12}{5} \bigg) \bigg( -3, \large\frac{16}{5} \bigg)$

 

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Section formula : $\large\frac{mx_2+mx_1}{m+n}$$, \large\frac{my_2+ny_1}{m+n}$
  • Mid point formula : $ \large\frac{x_1+x_2}{2}$$, \large\frac{y_1+y_2}{2}$
Match the following
Column $C_1$ - a matches column $C_2$ - (iii).
Substitute the values for x and y in the equation $x+5y=13$
$1+\bigg( \large\frac{12}{5} \bigg)$$ (5) = 13 $ True
$-3 + 5 \bigg( \large\frac{16}{5} \bigg) $$=13 $ True
Column $C_1$ - b matches $C_2$ - (i)
Substitute the values in $x+y=4$
$3+1=4$ True
also $ -7+11=4$ True
Column $C_1$ - c matches Column $C_2$ (ii)
It is given AP = PQ = QB
$\large\frac{AP}{PB}$$= \large\frac{1}{2}$
By section formula we know,
$x = \large\frac{mx_2+nx_1}{m+n}$$, \large\frac{my_2+ny_1}{m+n}$
$(x_1, y_1) $ be (-2, 5) and $(x_2, y_2)$ (3, 1)
$ \therefore $ coordinates of P are
$ \large\frac{1 \times 3 + 2(-2)}{2+1}$ and $ \large\frac{1 \times 1 +2 \times 5 }{2+1}$
(i.e) $ \bigg( - \large\frac{1}{3}$$, \large\frac{11}{3} \bigg)$
Since Q is the mid point of P and B the coordinates of Q are
$ \large\frac{x_1+x_2}{2}$$, \large\frac{y_1+y_2}{2} $
(i.e) $ \large\frac{-\Large\frac{1}{3}+3}{2}$$, \large\frac{\Large\frac{11}{3}+1}{2}$
(i.e) $\bigg( \large\frac{4}{3}$$, \large\frac{7}{3} \bigg)$
answered Jul 9, 2014 by thanvigandhi_1
edited Jul 9, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...