logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Conic Sections
0 votes

$2x^2 + 2y^2 – x = 0$, find the centre and the radius of the circles.

$\begin {array} {1 1} (A)\;\bigg( -\large\frac{1}{4}, 0\bigg) \: and \: \large\frac{1}{4} & \quad (B)\; \bigg(0, -\large\frac{1}{4}\bigg) \: and \: \large\frac{1}{4} \\ (C)\;\bigg( \large\frac{1}{4}, 0\bigg) \: and \: \large\frac{1}{4} & \quad (D)\;\bigg(0, +\large\frac{1}{4}\bigg) \: and \: \large\frac{1}{4} \end {array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Equation of a circle with centre (h,k) and radius r is given as $ (x-h)^2+(y-k)^2=r^2$
The equation of the given circle is
$2x^2+2y^2-x=0$
Dividing throughout by 2 we get,
$x^2+y^2-\large\frac{x}{2}$$=0$
This can be written as
$ \bigg( x^2 -\large\frac{x}{2} \bigg) $$+y^2=0$
(i.e) $ \bigg[ \bigg( x - \large\frac{1}{4} \bigg)^2 $$ - \large\frac{1}{16} \bigg] $$+ (y-0)^2=0$
(i.e) $ \bigg( x - \large\frac{1}{4} \bigg)^2$$+(y-0)^2=\large\frac{1}{16}$
This is of the form
$(x-h)^2+ (y-k)^2=r^2$
Comparing both the equations, we get,
$ h = \large\frac{1}{4}$$, k = 0$ and $ r = \large\frac{1}{4}$
Hence the coordinates of the centre are $ \bigg( \large\frac{1}{4}$$, 0 \bigg) $ and radiys $ r = \large\frac{1}{4}$
answered Jul 13, 2014 by thanvigandhi_1
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...