logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Communication Systems
0 votes

What are the three frequencies of an AM wave represented by the expression: $v = 5(1+0.6\cos 6280 t) \sin 211 \times 10^4 \; \text{volts}$?

Can you answer this question?
 
 

1 Answer

0 votes
Given an AM wave - $v = 5(1+0.6\cos 6280 t) \sin 211 \times 10^4 \; \text{volts}$
This can be compared to a standard AM wave of the form: $v = V_c (1+m\cos \omega_s t) \sin \omega_c t$
$(1)$ Carrier Amplitude: $V_c = 5\;V$
$(2)$ Modulation factor: $m = 0.6$
$(3)$ Signal Frequency: $f_s = \large\frac{\omega_s}{2\pi}$$ = \large\frac{6280}{2\pi}$$ = 1 \; kHz$
$(4)$ Carrier Frequency: $f_c = \large\frac{\omega_c}{2\pi}$$ = \large\frac{211 \times 10^4}{2\pi}$$ = 336 \; kHz$
Therefore, the AM wave will constitute three frequencies, $f_c - f_s$, $fc$, $f_c + f_s \rightarrow 336 - 1, 336 $ and $336+1$, i.e, $335\; kHz, 336\; kHz, 337\; kHz$
answered Jul 13, 2014 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...