logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Probability

If P (A) = 0.8, P (B) = 0.5 and P(B|A) = 0.4, find i) P(A ∩ B), (ii) P(A|B) and (iii) P(A ∪ B)

If P (A) = 0.8, P (B) = 0.5 and P(B|A) = 0.4, find 

i) P(A ∩ B)

(ii) P(A|B)

(iii) P(A ∪ B)

 

1 Answer

Toolbox:
  • \(p(B/A)=\frac{P(A\cap\;B)}{P(B)}\)
  • \(P(A\cap\;B)=P(B/A)\;P(A)\)
  • \(also\;P(A\cup\;B)=P(A)+P(B)-P(A\cap\;B)\)
  • \(P(A/B)=\frac{P(A\cap\;B)}{P(B)}\)
\(P(A)=0.8\;P(B)=0.5\;p(B/A)=0.4\)
\(P(A\cap\;B)=0.4x0.5\)
\(0.32\)
\(P(A/B)=\frac{P(A\cap\;B)}{p(B)}\)
=\(\frac{0.32}{0.5}\frac{32}{50}=0.64\)
\(p(A\cup\;B)=0.8+0.5-0.32\)
=\(0.98\)
answered Mar 4, 2013 by poojasapani_1
 

Related questions

...