# Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse : $\large\frac{x^2}{36}$$+\large\frac{y^2}{16}$$=1$
$\begin {array} {1 1} (A)\;Axis \: :\: major \: axis \: along \: x - axis, focus \: :\: ( \pm 2\sqrt 5, 0), vertices \: : \: ( \pm 6, 0), eccentricity : \sqrt 5 /3, length \: of \: the \: lactus \: rectum = \large\frac{16}{3} \\ (B)\;Axis \: :\: major \: axis \: along \: y - axis, focus \: :\: (0, \pm 2\sqrt 5), vertices \: : \: (0, \pm 6), eccentricity : \sqrt 5 /3, length \: of \: the \: lactus \: rectum = \large\frac{16}{3} \\ (C)\;Axis \: :\: major \: axis \: along \: x - axis, focus \: :\: ( \pm \sqrt 5, 0), vertices \: : \: ( \pm 6, 0), eccentricity :3/ \sqrt 5 , length \: of \: the \: lactus \: rectum = \large\frac{16}{3} \\ (D)\;Axis \: :\: major \: axis \: along \: y - axis, focus \: :\: (0, \pm \sqrt 5), vertices \: : \: ( \pm 6, 0), eccentricity :3/ \sqrt 5 , length \: of \: the \: lactus \: rectum = \large\frac{16}{3} \end {array}$