$\begin{array}{1 1} 25.71:1 \\ 51.42 :1 \\ 12.85:1 \\ 22.35 :1 \end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

$Note$: $1ev=1.6×10^{–19} \;V, \; k=1.23×10^{–23}$

$\begin{array}{1 1} 25.71:1 \\ 51.42 :1 \\ 12.85:1 \\ 22.35 :1 \end{array} $

0 votes

Answer: 25.71: 1

Let the Frenkel defect be $n$ in the ionic crystal of $N$ ions within interstitial space, where $n = (NN_i)^{1/2}\;$$ e^{\large\frac{-E}{2kT}}$

Since for this crystal, $N_i = 2N \rightarrow n = (2N^2)^{1/2}\;$$ e^{\large\frac{-E}{2kT}} = \sqrt 2 N e^{\large\frac{-E}{2kT}}$

$\big (\large\frac{n}{N} $$\big )$$_\text{Frenkel} = \sqrt 2 \times e ^ {\large\frac{-2 \times 1.6 \times 10^{-19}} {2 \times 1.23 \times 10^{-23} \times 4000}}$$ = \sqrt 2 e^{-2.8985}$

It is given that the amount of energy needed to form Schottky defects ($4\;eV$) is twice that of what's needed for Frenkel defect ($2\; eV$).

We can use what we just calculated and write the ratio as follows:

$\big (\large\frac{n}{N} $$\big )$$_\text{Schottky} = \sqrt 2 \times e ^ {\large\frac{-4 \times 1.6 \times 10^{-19}} {2 \times 1.23 \times 10^{-23} \times 4000}}$$ = \sqrt 2 e^{-5.797}$

Therefore the ratio of mole fractios of Frenkel and Schottky's defects is: $\large\frac{\sqrt 2 e^{-2.8985}} { \sqrt 2 e^{-5.797}}$$ = 25.71$

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...