Comment
Share
Q)

# Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse : $4x^2+9y^2=36$

$\begin {array} {1 1} (A)\;Axis : Major \: axis \: along \: x - axis, vertices : ( \pm 3, 0), foci : ( \pm \sqrt 5 , 0), Length \: of \: the \: major \: axis : 6, Length \: of \: the \: minor \: axis : 4, eccentricity \: e = \sqrt 5 / 3, length\: of \: the \: latus \: rectum 8/3 \\ (B)\; Axis : Major \: axis \: along \: x - axis, vertices : ( \pm 3, 0), foci : ( \pm 3 \sqrt 5 , 0), Length \: of \: the \: major \: axis : 6, Length \: of \: the \: minor \: axis : 4, eccentricity \: e = \sqrt 5 / 3, length\: of \: the \: latus \: rectum 8/3 \\ (C)\;Axis : Major \: axis \: along \: y - axis, vertices : ( 0, \pm 3), foci : ( 0, \pm \sqrt 5 ), Length \: of \: the \: major \: axis : 6, Length \: of \: the \: minor \: axis : 4, eccentricity \: e = \sqrt 5 / 3, length\: of \: the \: latus \: rectum 8/3 \\ (D)\;Axis : Major \: axis \: along \: y - axis, vertices : (0, \pm 3), foci : (0, \pm 3\sqrt 5), Length \: of \: the \: major \: axis : 6, Length \: of \: the \: minor \: axis : 4, eccentricity \: e = \sqrt 5 / 3, length\: of \: the \: latus \: rectum 8/3 \end {array}$