logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

The equilibrium constant of acetic acid in an aqueous solution of concentration $c$ is given by

$\begin{array}{1 1}K=\large\frac{c\Lambda_c^2}{\Lambda^{\infty}-\Lambda_c}\\K=\large\frac{c\Lambda_c^2}{\Lambda^{\infty}(\Lambda^{\infty}-\Lambda_c)}\\K=\large\frac{c\Lambda_c^2}{\Lambda^{\infty}+\Lambda_c}\\K=\large\frac{c\Lambda_c^2}{\Lambda^{\infty}(\Lambda^{\infty}+\Lambda_c)}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Answer : $K=\large\frac{c\Lambda_c^2}{\Lambda^{\infty}(\Lambda^{\infty}-\Lambda_c)}$
We have
$CH_3COOH \quad \leftrightharpoons \quad CH_3COO^-+H^+$
$K=\large\frac{[CH_3COO][H^+]}{[CH_3COOH]}=\frac{c\alpha^2}{(1-\alpha)}$
Since $\alpha=\Lambda_c/\Lambda^{\infty}$ we get
$K=\large\frac{c(\Lambda_c/\Lambda^{\infty})^2}{1-(\Lambda_c/\Lambda_{\infty})}$
$\Rightarrow \large\frac{c\Lambda_c^2}{\Lambda^{\infty}(\Lambda^{\infty}-\Lambda_c)}$
answered Jul 18, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...