Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

What is the concentration of $A$ at time $45\;s$ if $[A]_o = 1\;M$, $[B]_o = 45\;M$, and 2nd order rate constant is $0.6\;M^{-1}s^{-1}$?

$\begin{array}{1 1} 1.88 \times 10^{-12}\;M \\ 3.76 \times 10^{-12}\;M \\ 0.94 \times 10^{-12}\;M \\ 4.7 \times 10^{-12}\;M \end{array}$

Can you answer this question?

1 Answer

0 votes
Answer: $1.88 \times 10^{-12}\;M$
Given $[A]_o = 1\;M$, $[B]_o = 45\;M$, and 2nd order rate constant is $0.6\;M^{-1}s^{-1}$?
Since $[B]_0 \gt \gt [A]_0$ we can treat this as a pseudo-first order reaction.
We can use the rate equation $[A] = [A]_0 e^{-k't[B]_0}$
$\Rightarrow [A] = 1\;M\;e^{-0.6M^{-1}s^{-1} \times 45\;s \times 45\;M} =1.88 \times 10^{-12}\;M$
answered Jul 25, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App