$\begin{array}{1 1}83.721 \;kJmol^{-1} \\ 41.86\;kJmol^{-1} \\20.926 \;kJmol^{-1} \\ 104.624 \;kJmol^{-1} \end{array}$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Answer: $83.721 \;kJmol^{-1}$

Substituting in Arrhenius equation, $k=Ae^{\large\frac{-E_a}{RT}}$, we get:

$\Rightarrow 0.055s^{-1} = 1.2\times10^{13}s^{-1} \times e^{\large\frac{-E_a}{8.314\;JK.mol^{-1} \times 305^{\circ}K}}$

$\Rightarrow 4.58 \times 10^{-18} = e^{\large\frac{-E_a}{2535.7\;Jmol^{-1}}}$

Taking natural log and simplifying, $E_a = 83721\;Jmol^{-1} = 83.721 \;kJmol^{-1}$

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...