Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If \( \hat i+ \hat j+\hat k,\: 2\hat i+5\hat j,\: 3\hat i+2\hat j=3\hat k\: and \: \hat i-6\hat j-\hat k\) are the position vectorsof the points A,B,C and D, find the angle between \( \overrightarrow{AB}\: and \: \overrightarrow{CD}\). Deduce that \( \overrightarrow{AB}\: and \: \overrightarrow{CD}\) are collinear.

Can you answer this question?

1 Answer

0 votes
  • $\cos\theta=\large\frac{\overrightarrow{AB}.\overrightarrow{CD}}{\mid \overrightarrow{AB}\mid\mid\overrightarrow {CD}\mid}$
Step 1:
Let $\overrightarrow{OA}=\hat i+\hat j+\hat k$
$\overrightarrow{OB}=2\hat i+5\hat j$
$\overrightarrow{OC}=2\hat i+2\hat j-3\hat k$
$\overrightarrow{OD}=\hat i-6\hat j-\hat k$
$\quad\;\;=(2\hat i+5\hat j)-(\hat i+\hat j+\hat k)$
$\quad\;\;=(\hat i+4\hat j-\hat k)$
$\quad\;\;=(\hat i-6\hat j-\hat k)-(3\hat i+2\hat j-3\hat k)$
$\quad\;\;=(-2\hat i-8\hat j+2\hat k)$
Step 2:
Angle between $\overrightarrow{AB}$ and $\overrightarrow{CD}$
$\cos\theta=\large\frac{\overrightarrow{AB}.\overrightarrow{CD}}{\mid \overrightarrow{AB}\mid\mid\overrightarrow {CD}\mid}$
$\qquad=\large\frac{(\hat i+4\hat j-\hat k)(-2\hat i-8\hat k+2\hat k)}{\sqrt{1^2+4^2+1^2}\sqrt{(-3)^2+(8)^2+(4)^2}}$
$\cos \theta=1$
$\Rightarrow \theta=\pi$
$\therefore \overrightarrow{AB}$ and $\overrightarrow{CD}$ are collinear.
answered Sep 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App