Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If \( y=e^{\large \tan\: x},\) prove that $ \cos^2x\large\frac{d^2y}{dx}$$-(1+\sin\: 2x)\large\frac{dy}{dx}$$=0$

Can you answer this question?

1 Answer

0 votes
  • $y=f(x)$
  • $\large\frac{dy}{dx}$$=f'(x)$
  • $\large\frac{d^2y}{dx^2}=\frac{d}{dx}\big(\frac{dy}{dx}\big)$
  • $\sin 2x=2\sin x\cos x$
Step 1:
Given : $y=e^{\tan x}$
Differentiating with respect to $y$ we get,
$\large\frac{dy}{dx}$$=e^{\tan x}.\sec^2x$
(i.e)$\large\frac{1}{\sec^2x}\frac{dy}{dx}=e^{\tan x}$
$\cos^2 x\large\frac{dy}{dx}=$$y$
Step 2:
Differentiating again with respect to $x$ we get,
Apply product rule
$\cos^2 x\large\frac{d^2y}{dx^2}+\frac{dy}{dx}$$(2\cos x(-\sin x))=\large\frac{dy}{dx}$
$\cos^2 \large\frac{d^2y}{dx^2}+\frac{dy}{dx}$$(-2\sin x\cos x-1)=0$
But $\sin 2x=2\sin x\cos x$
$\Rightarrow \cos^2\large\frac{d^2y}{dx^2}-\frac{dy}{dx}$$(1+\sin 2x)=0$
Hence proved.
answered Sep 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App