logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Verify Lagrange's mean value theorem for the following function: $ f(x)=x^2-2x+3,\: for \: [4,6]$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Lagrange's Mean Value Theorem :
  • Let $f(x) $ be a real valued function that satisfies the following conditions.
  • (i) $f(x)$ is continuous on the closed interval $[a,b]$
  • (ii) $f(x)$ is differentiable in the open interval $(a,b)$
  • (iii) $f(a)=f(b)$
  • Then there exists atleast one value $c \in (a,b)$ such that $f'(c)=0$
  • $f'(c)=\large\frac{f(b)-f(a)}{b-a}$
Step 1:
Given :$f(x)=x^2-2x+3$ in the interval [4,6]
We know that a polynomial function is continuous everywhere and also differentiable.
So $f(x)$ being a polynomial is continuous and differentiable on (4,6)
So there must exist at least one real number $c\in (4,6)$ such that
$f'(c)=\large\frac{f(6)-f(4)}{6-4}$
Step 2:
$f(x)=x^2-2x+3$
$f(6)=6^2-2(6)+3=27$
$f(4)=4^2-2(4)+3=11$
$f'(x)=2x-2$
$f'(c)=2c-2$
$\therefore 2c-2=\large\frac{27-11}{2}$
$2c-2=\large\frac{16}{2}$
$2c-2=8$
$2c=10$
$c=5$
$c\in (4,6)$
Hence Lagrange's Mean Value theorem is verified.
answered Sep 24, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...