Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Discuss the continuity of the following function at x = 0: $ f(x) = \left\{ \begin{array}{l l}\large\frac{x^4+2x^3+x^2}{\tan^{-1}x}, & \quad if { x \; \neq 2 } \\ 0, & \quad if { x\; = 0 } \end{array} \right. $

Can you answer this question?

1 Answer

0 votes
  • If $f$ is a real function on a subset of the real numbers and $c$ be a point in the domain of $f$, then $f$ is continuous at $c$ if $\lim\limits_{\large x\to c} f(x) = f(c)$.
  • $\lim\limits_{\large x\to 0}\large\frac{\tan^{-1}x}{x}$$=1$
Step 1:
$f(x)=\left\{\begin{array}{1 1}\large\frac{x^4+2x^3+x^2}{\tan^{-1}x},&x\neq 2\\0,&x=0\end{array}\right.$
LHL at $x\neq 2$
$\Rightarrow \lim\limits_{x\to 2^-}\large\frac{x^4+2x^3+x^2}{\tan^{-1}x}$
$\Rightarrow \lim\limits_{x\to 2^-}\large\frac{x^2(x+1)^2}{\tan^{-1}x}$
$\Rightarrow \lim\limits_{x\to 2^-}\large\frac{x(x+1)^2}{\Large\frac{\tan^{-1}x}{x}}$
Step 2:
Since $\lim\limits_{x\to 0}\large\frac{\tan^{-1}x}{x}$$=1$
$\Rightarrow \lim\limits_{x\to 2^-}\large\frac{2(2+1)^2}{1}$
$\Rightarrow 18$
Step 3:
Consider the RHL at $x=0$
Hence $f(0)=0$
Hence it is not continuous at $x=0$
answered Sep 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App