Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int_0^{\large\frac{\pi}{2}} (2\log\sin\: x-\log\sin 2x)dx$

Can you answer this question?

1 Answer

0 votes
  • $m\log n=\log n^m$
  • $\log m-\log n=\log\large\frac{m}{n}$
  • $\sin 2x=2\sin x\cos x$
Step 1:
$I=\int_0^{\Large\frac{\pi}{2}}(2\log \sin x-\log \sin 2x)dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log\big(\large\frac{\sin^2x}{\sin 2x}\big)$$dx$
$\log m-\log n=\log\large\frac{m}{n}$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log \bigg(\large\frac{\sin^2x}{2\sin x\cos x}\bigg)$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log\bigg(\large\frac{\tan x}{2}\bigg)dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)-\log 2 dx$
$\quad=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)-\int_0^{\Large\frac{\pi}{2}}\log 2 dx$
Step 2:
$I=I_1-\log 2\big[x\big]_0^{\Large\frac{\pi}{2}}$------(1)
$\;\;=I_1-(\large\frac{\pi}{2}-\normalsize 0)$$\log 2$
Where $I_1=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)dx$
$\int_0^{\Large\frac{\pi}{2}}\log(\tan(\large\frac{\pi}{2}\normalsize -x))dx$
$I_1=\int_0^{\large\frac{\pi}{2}}\log(\cot x)dx$
Step 3:
$2I=\int_0^{\Large\frac{\pi}{2}}\log(\tan x)+\log(\cot x)]dx$
$\log m+\log n=\log (mn)$
$\Rightarrow \int_0^{\large\frac{\pi}{2}}\log(\tan x\cot x)dx$
On substituting the value of $I_1$ in equ(1) we get
$I=I_1-(\large\frac{\pi}{2}$$-0)\log 2$
$I=0-(\large\frac{\pi}{2}$$-0)\log 2$
$\;\;=\large\frac{-\pi}{2}$$\log 2$
answered Sep 24, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App