logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate : $ \int \large\frac{(x-4)e^x}{(x-2)^3}$$dx $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int e^x[f(x)+f'(x)dx]=e^xf(x)+c$
Step 1:
Let $I=\int \large\frac{(x-4)e^x dx}{(x-2)^3}$
This can be written as
$\qquad= \int \large\frac{(x-2)-2}{(x-2)^3}$$dx$
$\qquad=\int\bigg[\large\frac{1}{(x-2)^2}-\frac{2}{(x-2)^3}\bigg]$$dx$
Step 2:
This is of the form
$\qquad =\int e^x[f(x)+f'(x)]dx$
$\qquad=e^x(f(x))$
Here $f(x)=\large\frac{1}{(x-2)^2}$
$f'(x)=\large\frac{-2}{(x-2)^2}$
$\therefore I=\large\frac{e^x}{(x-2)^2}$
answered Sep 23, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...