Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Chemistry  >>  Solutions
0 votes

Calculate the depression in the freezing point of water when 10 g of $CH_3CH_2CHClCOOH$ is added to 250 g of water. $K_a = 1.4 \times 10^{–3}, K_f = 1.86 K kg mol^{–1}$.

$\begin{array}{1 1}0.65^{\large\circ}\\0.75^{\large\circ}\\0.55^{\large\circ}\\0.45^{\large\circ}\end{array} $

Can you answer this question?

1 Answer

0 votes
Molar mass of $CH_3CH_2CHClCOOH=12+3+12+2+12+1+35.5+12+32+1$
$\Rightarrow 122.5g mol^{-1}$
Number of moles of $CH_3CH_2CHClCOOH =\large\frac{10}{122.5}$
$\Rightarrow 8.16\times 10^{-2}$ mole
$\therefore$ Molality of the solution (m)
$m=\large\frac{8.16\times 10^{-2}mol}{250}$$\times 1000g kg ^{-1}$
If $x$ is the degree of dissociation of $CH_3CH_2CHClCOOH$,then
$CH_3CH_2CHClCOOH\leftrightharpoons CH_3CH_2CHClCOO^-+H^+$
To calculate Van't Hoff factor
Total moles of particles =$n[1-x+x-x]$
$\Rightarrow n[1+x]$
We know that
$\;\;=\sqrt{\large\frac{1.4\times 10^{-3}}{0.3264}}$$=0.065$
$\Delta T_f=i K_f m$
$\Rightarrow 1.065\times 1.86 \times 0.3264$
$\Rightarrow 0.65^{\large\circ}$
answered Aug 5, 2014 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App