$\begin{array}{1 1}1.133\\1.123\\1.433\\0.133\end{array} $

Given

$P_s=\big(\large\frac{98}{100})$$P^0$

We know that

$\large\frac{P^0-P_s}{P_s}=\frac{w\times M}{m\times W}$

$\Rightarrow \large\frac{w}{m\times W}$$\times 1000 \times \large\frac{M}{1000}$

Molality =$\large\frac{w\times 1000}{m\times W}$

$\therefore \large\frac{P^0-P_s}{P_s}=$molality $\times \large\frac{M}{1000}$

$\therefore \large\frac{P^0-(98/100)P^0}{(98/100)P^0}=$molality $\times \large\frac{1000}{18}$

$\therefore$ Molality =$\large\frac{2P^0/100}{\Large\frac{98}{100}\normalsize P^0}\times \large\frac{1000}{18}$

$\qquad\qquad=1.133$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...