Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Chemistry  >>  Solutions
0 votes

The freezing point of 0.02mole fraction solution of acetic acid in benzene is 277.4K.Assuming molality equal to molarity,calculate $K_c$ for the equilibrium reaction $2CH_3COOH \;\;\leftrightharpoons\;\;(CH_3COOH)_2$.

$\begin{array}{1 1}2.787M^{-1}\\3.787M^{-1}\\4.787M^{-1}\\5.787M^{-1}\end{array} $

Can you answer this question?

1 Answer

0 votes
Given :
$K_f$(benzene)=$5.0kg mol^{-1}$
From the expression ,$-\Delta T_f=K_fm$
We get
$m=\large\frac{\Delta T_f}{K_f}=\frac{(278.4-277.4)}{5.0}$
$\Rightarrow 0.2mol kg^{-1}$
(ie) $C=0.2mol dm^{-3}$
From the given mole fraction ,we can calculate the initial concentration of acetic acid.We have
$x_2=\large\frac{n_2}{n_1+n_2}$$\simeq \large\frac{n_2}{n_1}=\frac{n_2}{(w_1/M_1)}$
$\Rightarrow \large\frac{n_2}{w_1}$$\times M_1$
$\Rightarrow \large\frac{w_2}{M_2\times w_1}$$\times M_2=m_0M_1$
$m_0=\large\frac{x_2}{M_1}=\frac{0.02}{78\times 10^{-3}}$
$\Rightarrow 0.257mol kg^{-1}$
(ie) $C_0=0.257mol dm^{-3}$
Now for the equilibrium reaction ,
$2CH_3COOH \;\;\leftrightharpoons\;\;(CH_3COOH)_2$.
$C_0-2x\qquad\qquad\qquad x$
We get,$C=C_0-2x+x=C_0-x$
Thus $K_c=\large\frac{[(CH_3COOH)_2]}{[CH_3COOH]}$
$\Rightarrow \large\frac{x}{(C_0-2x)^2}$
$\Rightarrow \large\frac{0.057}{(0.257-2\times 0.057)^2}$
$\Rightarrow 2.787 M^{-1}$
answered Aug 7, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App