Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Chemistry  >>  Solutions
0 votes

Calculate the radius of molybdenum atom if the element crystallizes as body- centred cubic crystals. Given: Density of $Mo=10.3\;g\;cm^{-3}$ and molar mass of $Mo= 95.94 \;g\;mol^{-1}$

$\begin{array}{1 1} 135.5\;pm \\ 415\;pm \\ 678\;pm \\ 516\;pm \end{array} $

Can you answer this question?

1 Answer

0 votes
Answer : 135.5 pm
In a body-centered cubic unit cell, there are two atoms per unit cell.
Hence, from the expression $r= \large\frac{N}{a^3} \bigg( \large\frac{M}{N_A}\bigg)$
We get, $a^3 = \large\frac{N}{\rho} \bigg( \large\frac{M}{N_A}\bigg)$
$\qquad= \bigg( \large\frac{2}{10.3 \;g\;cm^{-3}}\bigg) \bigg( \frac{95.04 \;g \;mol^{-1} }{6.023 \times 10^{23}\;mol^{-1}} \bigg)$
$\qquad= 3.09 \times 10^{-23}\;cm^3$
or $a= 3.13 \times 10^{-8}\;cm =313\;pm$
Now since in the body centered cubilc unit cell , atoms touch each other along the cross diagonal of the cube , we have
$4r= \sqrt 3 a$
$r= (\sqrt 3) (313\;pm)/4=135.5\;pm$
answered Aug 8, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App