logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Model Papers

If \( \overrightarrow a \times \overrightarrow b=\overrightarrow c \times \overrightarrow d\: and \: \overrightarrow a \times \overrightarrow c=\overrightarrow b \times \overrightarrow d\) show that \( \overrightarrow a-\overrightarrow d\) is parallel to \( \overrightarrow b-\overrightarrow c\) where \( \overrightarrow a \neq \overrightarrow d\: and \overrightarrow b \neq\overrightarrow c\)

Download clay6 mobile app

1 Answer

Toolbox:
  • $ \overrightarrow a\times\overrightarrow a = \overrightarrow 0$
  • $ \overrightarrow a\times \overrightarrow b= -(\overrightarrow b\times \overrightarrow a)$
  • If two vectors are parallel then their cross product is zero
Step 1:
Given :
$\overrightarrow a\times \overrightarrow b=\overrightarrow c\times \overrightarrow d$
$\overrightarrow a\times \overrightarrow c=\overrightarrow b\times \overrightarrow d$
If two vectors are parallel then their cross product is zero
If $(\overrightarrow a-\overrightarrow d)$ is parallel to $(\overrightarrow b-\overrightarrow c)$ then $(\overrightarrow a-\overrightarrow d)\times (\overrightarrow b-\overrightarrow c)$
$\Rightarrow (\overrightarrow a\times \overrightarrow b)-(\overrightarrow a\times \overrightarrow c)-(\overrightarrow d\times \overrightarrow b)+(\overrightarrow d\times \overrightarrow c)$
Step 2:
But $\overrightarrow a\times \overrightarrow c=\overrightarrow b\times \overrightarrow d$
and $\overrightarrow d\times \overrightarrow b=-(\overrightarrow b\times \overrightarrow d)$
$\overrightarrow a\times \overrightarrow b=\overrightarrow c\times \overrightarrow d$
$(\overrightarrow d\times \overrightarrow c)=-(\overrightarrow c\times \overrightarrow d)$
Substituting this in the above step,we get
$ (\overrightarrow c\times \overrightarrow d)-(\overrightarrow b\times \overrightarrow d)+(\overrightarrow b\times \overrightarrow d)-(\overrightarrow c\times \overrightarrow d)$
$\Rightarrow 0$
Hence $(\overrightarrow a-\overrightarrow d)$ is parallel to $(\overrightarrow b-\overrightarrow c)$
answered Sep 23, 2013 by sreemathi.v
 

Related questions

...