Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Motion in a Straight Line
0 votes

A small block slides without friction down an inclined plane starting from rest. Let $S_n$ be the distance travelled from time $t- n-1$ to $t=n$. Then $\large\frac{S_n}{S_{n_1}}$ is

$\begin{array}{1 1} \large\frac{2n-1}{2n} \\ \large\frac{2n+1}{2n-1} \\ \large\frac{2n-1}{2n+1} \\\large\frac{2n}{2n+1}\end{array} $

Can you answer this question?

1 Answer

0 votes
For distance $S_n$ travelled from $(n-1)$ to n,
$S_n= 0 [n-n-1)]+\large\frac{1}{2} $$a[n^2-(n-1)^2]$
$S_n = \large\frac{1}{2}$$a [n^2-(n^2+1-2n)]$
$S_n= \large\frac{a}{2}$$(2n-1)$
Again , $ S_{n+1}= \large\frac{1}{2}$$a[(n+1)^2-n^2]$
$\qquad= \large\frac{a}{2} $$[2n+1]$
$\large\frac{S_n}{S_{n+1}}=\large\frac{\frac {a}{2} (2n-1)}{\frac{a}{2} (2n+1)}$
$\qquad= \large\frac{2n-1}{2n+1}$
answered Aug 14, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App