Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
+1 vote

What is the maximum value of the function \(\sin \: x + \cos x\)?

$\begin{array}{1 1} \text{maximum value of}f(x)=\sqrt 2 \\ \text{maximum value of} f(x)= 0 \\\text{minimum value of} f(x)=\sqrt 2 \\ \text{maximum value of }f(x)= -\sqrt 2 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
  • $\large\frac{d}{dx}$$(\sin x)=\cos x$
Step 1:
Let $f(x)=\sin x+\cos x$
On differentiating we get
$f'(x)=\cos x-\sin x$
For maxima and minima
$\Rightarrow \cos x-\sin x=0$
$\cos x[1-\tan x]=0$
$\tan x=1$
$x=\large\frac{\pi}{4}$ or $\large\frac{5\pi}{4}$
Step 2:
Now we find $f(x)$ at $x=0,\large\frac{\pi}{4},\frac{5\pi}{4}$$,2\pi$
$f(0)=\sin 0+\cos 0=1$
$f(\large\frac{\pi}{4})$$=\sin \large\frac{\pi}{4}+$$\cos\large\frac{\pi}{4}$$=\sqrt 2$
$f(\large\frac{5\pi}{4})$$=\sin \large\frac{5\pi}{4}+$$\cos\large\frac{5\pi}{4}$
$\qquad=\large\frac{1}{\sqrt 2}-\frac{1}{\sqrt 2}$
$\qquad=\large\frac{-2}{\sqrt 2}$
$\qquad=-\sqrt 2$
$f(2\pi)=\sin 2\pi+\cos 2\pi$
Hence the maximum value of $f(x)=\sqrt 2$


answered Aug 7, 2013 by sreemathi.v
edited Aug 30, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App