Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class11  >>  Laws of Motion
0 votes

A uniform sphere of radius R and mass M is held at rest on an inclined plane of angle $\theta$ by a horizontal string , as shown in the figure. Let $R= 20 \;cm,M= 3\;kg,$ and $ \theta= 30^{\circ}$. What is the normal force exerted on the sphere by the inclined plane ?

$\begin{array}{1 1}3.76\;N\\36\;N\\29.4\;N \\46\;N\end{array} $

Can you answer this question?

1 Answer

0 votes
Answer : $29.4\;N$
Step 1:
Free Body Diagram :
Step 2:
Apply $\sum \overrightarrow{T}=0$ about an axis through the center of the sphere :
Apply $\sum F_x=0$ to the sphere
Substitute for f and solve for T :
Substitute numerical values and evaluate T .
$fR -TR =0 => T =f$
$f+T \cos \theta- Mg \sin \theta=0$
$T= \large\frac{Mg \sin \theta}{1+\cos \theta}$
$ T= \large\frac{(3 \;kg)(9.81 \; m/s^2) \sin 30^{\circ}}{1+\cos 30^{\circ}}$$=7.89\;N$
Step 3:
Apply $\sum F_y =0$ to the sphere :
Solve for $F_n$
Substitute numerical values and evaluate $F_n$ :
$F_n-T \sin \theta - Mg \cos \theta =0$
$F_n =T \sin \theta+Mg \cos \theta$
$F_n= (7.89 \;N) \sin 30^{\circ}+ (3 \;kg)(9.81\;m/s^2) \cos 30^{\circ}$
$\qquad= 29.4 \;N$


answered Aug 28, 2014 by meena.p
edited Aug 29, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App