logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.

$\begin{array}{1 1} 5\;cm \\ 4\;cm \\ 3\;cm \\ 6\;cm \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Volume of a box=$l\times b\times h$
  • $\large\frac{d}{dx}$$(xy)=x.\large\frac{d}{dx}$$(y)+y.\large\frac{d}{dx}$$(x)$
Step 1:
Let each side of the square be cut off be $x$ cm.
For the box:
Length=$18-2x$
breadth=$18-2x$
height=$x$
Volume=$x(18-2x)^2$
On differentiating with respect to x we get
$\large\frac{dv}{dx}$$=x.2(18-2x)(-2)+(18-2x)^2.1$
$\quad=(18-2x)(-4x+18-20)$
$\quad=(18-2x)(18-6x)$
Step 2:
For maxima and minima
$\large\frac{dV}{dx}$$=0$
$\Rightarrow (18-2x)(18-6x)=0$
$\Rightarrow 324-108x-36x+12x^2=0$
$12x^2-144x+324=0$
$\Rightarrow 12[x^2-12x+27]=0$
$\Rightarrow [x^2-12x+27]=0$
$\Rightarrow x(x-9)-3(x-9)=0$
$\Rightarrow (x-9)(x-3)=0$
$x=3,9$
Step 3:
But $x=9cm$ is not possible.
On differentiating with respect to x we get
Also $\large\frac{d^2V}{dx^2}$$=(18-2x)(-6)+(18-6x)(-2)$
At $x=3$
$\large\frac{d^2V}{dx^2}$$=(18-6)(-6)+(18-18)(-2)$
$\qquad=12(-6)+0(-2)$
$\qquad=-72 <0$
Hence volume is maximum when $x=3$ (i.e) Square of side=3 cm is cut from each corner.
answered Aug 8, 2013 by sreemathi.v
edited Aug 30, 2013 by sharmaaparna1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...