logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Surface Area $S=2\pi r^2+2\pi rh$
  • $h=\large\frac{s-2\pi r^2}{2\pi r}$
  • Volume $V=\pi r^2h$
Step 1:
Let $S$ be the given surface area of the closed cylinder whose radius is $r$ and height $h$.
Let $V$ be its volume.
Surface Area $S=2\pi r^2+2\pi rh$
$h=\large\frac{S-2\pi r^2}{2\pi r}$----(1)
Volume $V=\pi r^2h$
Substitute the value of h in the above equation
$\qquad\qquad=\pi r^2\bigg[\large\frac{S-2\pi r^2}{2\pi r}\bigg]$
$\qquad\qquad=\large\frac{1}{2}$$r(S-2\pi r)$
$\qquad\qquad=\large\frac{1}{2}$$[Sr-2\pi r^3]$
Differentiating with respect to r we get
$\large\frac{dV}{dx}=\frac{1}{2}$$[S-6\pi r^2]$
Step 2:
For maxima and minima $\large\frac{dV}{dx}$$=0$
$S-6\pi r^2=0$
$S=6\pi r^2$
From (1)
$h=\large\frac{S-2\pi r^2}{2\pi r}$
Substitute the value os S in the above equation
$h=\large\frac{6\pi r^2-2\pi r^2}{2\pi r}$
$\;\;=\large\frac{4\pi r^2}{2\pi r}$
$\;\;=2r$
$h=2r$
Step 3:
On double differentiation of V we get,
$\large\frac{d^2V}{dr^2}=\frac{1}{2}$$(-12\pi r)$
$\qquad=-6\pi r$
$\qquad=-ve$
$\therefore V$ is maximum
Thus volume is maximum when $h=2r$
(i.e)when height of cylinder =diameter of the base.
answered Aug 8, 2013 by sreemathi.v
edited Aug 19, 2013 by sharmaaparna1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...