Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?

$\begin{array}{1 1} \frac{10}{\pi}\big(\frac{\pi}{50}\big)^{\frac{2}{3}}cm \\ \frac{100}{\pi}\big(\frac{\pi}{20}\big)^{\frac{2}{3}}cm \\ \frac{100}{\pi}\big(\frac{\pi}{50}\big)^{\frac{2}{3}}cm \\ \frac{100}{\pi}\big(\frac{-\pi}{50}\big)^{\frac{2}{3}}cm \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Volume =$\pi r^2h$
Step 1:
Let $r$ be the radius and $h$ be the height of cylindrical can.
Volume=$\pi r^2h$
$h=\large\frac{100}{\pi r^2}$
Total surface area of the can $S=2\pi r h+2\pi r^2$
$\Rightarrow 2\pi r\big(\large\frac{100}{\pi r^2}\big)$$+2\pi r^2$
$\Rightarrow \large\frac{200}{r}$$+2\pi r^2$
Step 2:
$\large\frac{dS}{dr}=-\large\frac{200}{r^2}$$+4\pi r$
$\Rightarrow \large\frac{-200+4\pi r^3}{r^2}$
Now $\large\frac{dS}{dr}$$=0$
$\Rightarrow \large\frac{-200+4\pi r^2}{r^2}$$=0$
$4\pi r^3-200=0$
$\pi r^3=50$
Step 3:
Also $\large\frac{d^2S}{dx^2}=\frac{400}{r^3}$$+4\pi$
At $r=\big[\large\frac{50}{\pi}\big]^{\Large\frac{1}{3}}$
$\Rightarrow S$ is minimum or least when $r=\big(\large\frac{50}{\pi}\big)^{\Large\frac{1}{3}}$
Hence the total surface area is least when radius of base is $\big[\large\frac{50}{\pi}\big]^{\Large\frac{1}{3}}$cm.
$h=\large\frac{100}{\pi r^2}$
$\Rightarrow \large\frac{100}{\pi}\big(\large\frac{\pi}{50}\big)^{\Large\frac{2}{3}}$cm.
answered Aug 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App