Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Probability
0 votes

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier?

$\begin{array}{1 1} \large\frac{9}{13} \\ \large\frac{4}{13} \\ \large\frac{2}{13} \\ \large\frac{6}{13} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Given $E_1, E_2, E_3.....E_n$ are mutually exclusive and exhaustive events, we can find the conditional probability $P(E_i|A)$ for any event A associated w/ $E_i$ using the Bayes theorem as follows: \(\;P(E_i/A)\)=\(\large \frac{P(E_i)P(A/E_i)}{\sum_{i=1}^{n}\;P(E_i)P(A/E_i)}\)
Let $E_1$: students residing in the hostel $\rightarrow$ P($E_1$) = 60% = $\large\frac{60}{100} = \frac{3}{5}$
Let $E_2$: day scholars $\rightarrow$ P($E_2$) = 40% = $\large\frac{40}{100} = \frac{2}{5}$
30% of hostel students get an A grade $\rightarrow$ P (E|$E_1$) = 30% = $\large\frac{30}{100} = \frac{3}{10}$
20% of day scholars get an A grade $\rightarrow$ P (E|$E_2$) = 20% = $\large\frac{20}{100} = \frac{1}{5}$
We need to find the probability that a student who is chosen from random that has an A grade is from the hostel.
We can use Baye's theorem, according to which $P(E_1|A) = \large\frac{P(E_1)(P(A|E_1)}{P(E_1)P(A|E_1) + P(E_2)+P(A|E_2)}$
Using Baye's theorem, P ($E_1$|A) =$ \Large\frac{\frac{3}{5}.\frac{3}{10}}{\frac{3}{5}.\frac{3}{10}+\frac{2}{5}.\frac{1}{5}}$ = $\large\frac{9}{9+4} = \frac{9}{13}$
answered Jun 19, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App